42 research outputs found

    Examining price and service competition among retailers in a supply chain under potential demand disruption

    Full text link
    © 2017 Elsevier Ltd Supply chain disruptions management has attracted significant attention among researchers and practitioners. The paper aims to examine the effect of potential market demand disruptions on price and service level for competing retailers. To investigate the effect of potential demand disruptions, we consider both a centralized and a decentralized supply chain structure. To analyze the decentralized supply chain, the Manufacturing Stackelberg (MS) game theoretical approach was undertaken. The analytical results were tested using several numerical analyses. It was shown that price and service level investment decisions are significantly influenced by demand disruptions to retail markets. For example, decentralized decision makers tend to lower wholesale and retail prices under potential demand disruptions, whereas a proactive retailer needs to increase service level with an increased level of possible disruptions. This research may aid managers to analyze disruptions prone market and to make appropriate decision for price and service level. The manufacturer or the retailers will also be able to better determine when to close a market based on the proposed analysis by considering anticipated disruptions. The benefits and usefulness of the proposed approach are explained through a real-life case adopted from a toy supply chain in Bangladesh

    Development of Photonic Crystal Fiber Based Gas/ Chemical Sensors

    Full text link
    The development of highly-sensitive and miniaturized sensors that capable of real-time analytes detection is highly desirable. Nowadays, toxic or colorless gas detection, air pollution monitoring, harmful chemical, pressure, strain, humidity, and temperature sensors based on photonic crystal fiber (PCF) are increasing rapidly due to its compact structure, fast response and efficient light controlling capabilities. The propagating light through the PCF can be controlled by varying the structural parameters and core-cladding materials, as a result, evanescent field can be enhanced significantly which is the main component of the PCF based gas/chemical sensors. The aim of this chapter is to (1) describe the principle operation of PCF based gas/ chemical sensors, (2) discuss the important PCF properties for optical sensors, (3) extensively discuss the different types of microstructured optical fiber based gas/ chemical sensors, (4) study the effects of different core-cladding shapes, and fiber background materials on sensing performance, and (5) highlight the main challenges of PCF based gas/ chemical sensors and possible solutions

    The Nucleus Accumbens: A Switchboard for Goal-Directed Behaviors

    Get PDF
    Reward intake optimization requires a balance between exploiting known sources of rewards and exploring for new sources. The prefrontal cortex (PFC) and associated basal ganglia circuits are likely candidates as neural structures responsible for such balance, while the hippocampus may be responsible for spatial/contextual information. Although studies have assessed interactions between hippocampus and PFC, and between hippocampus and the nucleus accumbens (NA), it is not known whether 3-way interactions among these structures vary under different behavioral conditions. Here, we investigated these interactions with multichannel recordings while rats explored an operant chamber and while they performed a learned lever-pressing task for reward in the same chamber shortly afterward. Neural firing and local field potentials in the NA core synchronized with hippocampal activity during spatial exploration, but during lever pressing they instead synchronized more strongly with the PFC. The latter is likely due to transient drive of NA neurons by bursting prefrontal activation, as in vivo intracellular recordings in anesthetized rats revealed that NA up states can transiently synchronize with spontaneous PFC activity and PFC stimulation with a bursting pattern reliably evoked up states in NA neurons. Thus, the ability to switch synchronization in a task-dependent manner indicates that the NA core can dynamically select its inputs to suit environmental demands, thereby contributing to decision-making, a function that was thought to primarily depend on the PFC

    Antimicrobials: a global alliance for optimizing their rational use in intra-abdominal infections (AGORA)

    Full text link

    Hybrid metasurface based tunable near-perfect absorber and plasmonic sensor

    Full text link
    We propose a hybrid metasurface-based perfect absorber which shows the near-unity absorbance and facilities to work as a refractive index sensor. We have used the gold mirror to prevent the transmission and used the amorphous silicon (a-Si) nanodisk arrays on top of the gold mirror which helps to excite the surface plasmon by scattering light through it at the normal incident. We numerically investigated the guiding performance. The proposed absorber is polarization independent and shows a maximum absorption of 99.8% at a 932 nm wavelength in the air medium. Considering the real applications, by varying the environments refractive indices from 1.33 to 1.41, the proposed absorber can maintain absorption at more than 99.7%, with a red shift of the resonant wavelength. Due to impedance matching of the electric and magnetic dipoles, the proposed absorber shows near-unity absorbance over the refractive indices range of 1.33 to 1.41, with a zero-reflectance property at a certain wavelength. This feature could be utilized as a plasmonic sensor in detecting the refractive index of the surrounding medium. The proposed plasmonic sensor shows an average sensitivity of 325 nm/RIU and a maximum sensitivity of 350 nm/RIU over the sensing range of 1.33 to 1.41. The proposed metadevice possesses potential applications in solar photovoltaic and photodetectors, as well as in organic and bio-chemical detection

    Phase-conjugated directional diffraction from a retroreflector array hologram

    Get PDF
    A corner cube retroreflector (CCR) consists of three perpendicular flat surfaces and reflects the incident light back to its source. Optical properties of CCR arrays have applications in free space optical communication, low power wireless networks and sensing applications. Conventional top-down CCR array fabrication is complex and requires expensive equipment and limited to broadband reflection only. Here, we utilize laser assisted copying of a CCR array to a light sensitive holography polymer film (∼10 μm) which was placed parallel to the object plane (CCR array) during the recording. Optical characterization of the recorded CCR array hologram was carried out using reflection and color-selective diffraction measurements. Angle dependent optical properties were also simulated computationally followed by their experimental realization, which confirm our experimental findings. In a broadband illumination setting, a broadband white light reflection and a narrowband color diffraction were observed. A linear relationship between the incidence angle of the broadband light and the diffraction angle of the diffracted color light was observed. Bright and well-defined 2nd order far-field diffraction patterns were observed using an image-screen experiment. Maximum diffraction efficiency (DE) of ∼50% was observed for the monochromatic green light at normal illumination setting. The far-field diffraction interspacing/intensity exhibits increasing/decreasing trend with illumination tilt angles, measured between 10 to 50 degrees. The recorded CCR array holograms offer potential applications in color selective diffraction optics and customized optical devices

    31st Annual Conference of the IEEE Photonics Society, IPC 2018

    Full text link
    We report the electrical control of the optical attenuation by a manganese dioxide (MnO 2 ) metasurface. The attenuation is varied by 25% with the change of current of 5.33 μA. The device shows the potential of this material in tunable devices
    corecore